24 research outputs found

    Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors.

    Get PDF
    Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow

    p22phox C242T Single-Nucleotide Polymorphism Inhibits Inflammatory Oxidative Damage to Endothelial Cells and Vessels.

    Get PDF
    BACKGROUND: The NADPH oxidase, by generating reactive oxygen species, is involved in the pathophysiology of many cardiovascular diseases and represents a therapeutic target for the development of novel drugs. A single-nucleotide polymorphism, C242T of the p22(phox) subunit of NADPH oxidase, has been reported to be negatively associated with coronary heart disease and may predict disease prevalence. However, the underlying mechanisms remain unknown. METHODS AND RESULTS: With the use of computer molecular modeling, we discovered that C242T single-nucleotide polymorphism causes significant structural changes in the extracellular loop of p22(phox) and reduces its interaction stability with Nox2 subunit. Gene transfection of human pulmonary microvascular endothelial cells showed that C242T p22(phox) significantly reduced Nox2 expression but had no significant effect on basal endothelial O2 (.-) production or the expression of Nox1 and Nox4. When cells were stimulated with tumor necrosis factor-α (or high glucose), C242T p22(phox) significantly inhibited tumor necrosis factor-α-induced Nox2 maturation, O2 (.-) production, mitogen-activated protein kinases and nuclear factor κB activation, and inflammation (all P<0.05). These C242T effects were further confirmed using p22(phox) short-hairpin RNA-engineered HeLa cells and Nox2(-/-) coronary microvascular endothelial cells. Clinical significance was investigated by using saphenous vein segments from non-coronary heart disease subjects after phlebotomies. TT (C242T) allele was common (prevalence of ≈22%) and, in comparison with CC, veins bearing TT allele had significantly lower levels of Nox2 expression and O2 (.-) generation in response to high-glucose challenge. CONCLUSIONS: C242T single-nucleotide polymorphism causes p22(phox) structural changes that inhibit endothelial Nox2 activation and oxidative response to tumor necrosis factor-α or high-glucose stimulation. C242T single-nucleotide polymorphism may represent a natural protective mechanism against inflammatory cardiovascular diseases

    The cardiomyocyte "redox rheostat": Redox signalling via the AMPK-mTOR axis and regulation of gene and protein expression balancing survival and death.

    Get PDF
    Reactive oxygen species (ROS) play a key role in development of heart failure but, at a cellular level, their effects range from cytoprotection to induction of cell death. Understanding how this is regulated is crucial to develop novel strategies to ameliorate only the detrimental effects. Here, we revisited the fundamental hypothesis that the level of ROS per se is a key factor in the cellular response by applying different concentrations of H2O2 to cardiomyocytes. High concentrations rapidly reduced intracellular ATP and inhibited protein synthesis. This was associated with activation of AMPK which phosphorylated and inhibited Raptor, a crucial component of mTOR complex-1 that regulates protein synthesis. Inhibition of protein synthesis by high concentrations of H2O2 prevents synthesis of immediate early gene products required for downstream gene expression, and such mRNAs (many encoding proteins required to deal with oxidant stress) were only induced by lower concentrations. Lower concentrations of H2O2 promoted mTOR phosphorylation, associated with differential recruitment of some mRNAs to the polysomes for translation. Some of the upregulated genes induced by low H2O2 levels are cytoprotective. We identified p21Cip1/WAF1 as one such protein, and preventing its upregulation enhanced the rate of cardiomyocyte apoptosis. The data support the concept of a "redox rheostat" in which different degrees of ROS influence cell energetics and intracellular signalling pathways to regulate mRNA and protein expression. This sliding scale determines cell fate, modulating survival vs death

    Redox Regulation of Cardiac ASK1 (Apoptosis Signal-Regulating Kinase 1) Controls p38-MAPK (Mitogen-Activated Protein Kinase) and Orchestrates Cardiac Remodeling to Hypertension.

    Get PDF
    Systemic hypertension increases cardiac workload causing cardiomyocyte hypertrophy and increased cardiac fibrosis. An underlying feature is increased production of reactive oxygen species. Redox-sensitive ASK1 (apoptosis signal-regulating kinase 1) activates stress-regulated protein kinases (p38-MAPK [mitogen-activated protein kinases] and JNKs [c-Jun N-terminal kinases]) and promotes fibrosis in various tissues. Here, we determined the specificity of ASK1 signaling in the heart, with the hypothesis that ASK1 inhibitors may be used to manage fibrosis in hypertensive heart disease. Using immunoblotting, we established that moderate levels of H2O2 activate ASK1 in neonatal rat cardiomyocytes and perfused rat hearts. ASK1 was activated during ischemia in adult rat hearts, but not on reperfusion, consistent with activation by moderate (not high) reactive oxygen species levels. In contrast, IL (interleukin)-1β activated an alternative kinase, TAK1 (transforming growth factor-activated kinase 1). ASK1 was not activated by IL1β in cardiomyocytes and activation in perfused hearts was due to increased reactive oxygen species. Selonsertib (ASK1 inhibitor) prevented activation of p38-MAPKs (but not JNKs) by oxidative stresses in cultured cardiomyocytes and perfused hearts. In vivo (C57Bl/6J mice with osmotic minipumps for drug delivery), selonsertib (4 mg/[kg·d]) alone did not affect cardiac function/dimensions (assessed by echocardiography). However, it suppressed hypertension-induced cardiac hypertrophy resulting from angiotensin II (0.8 mg/[kg·d], 7d), with inhibition of Nppa/Nppb mRNA upregulation, reduced cardiomyocyte hypertrophy and, notably, significant reductions in interstitial and perivascular fibrosis. Our data identify a specific reactive oxygen species→ASK1→p38-MAPK pathway in the heart and establish that ASK1 inhibitors protect the heart from hypertension-induced cardiac remodeling. Thus, targeting the ASK1→p38-MAPK nexus has potential therapeutic viability as a treatment for hypertensive heart disease

    NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow.

    Get PDF
    First described as essential to the phagocytic activity of leukocytes, Nox2-derived ROS have emerged as mediators of a range of cellular and tissue responses across species from salubrious to deleterious consequences. Knowledge of their role in inflammation is limited, however. We postulated that TNFα-induced endothelial reactive oxygen species (ROS) generation and pro-inflammatory signaling would be ameliorated by targeting Nox2. Herein, we in silico-modelled two first-in-class Nox2 inhibitors developed in our laboratory, explored their cellular mechanism of action and tested their efficacy in in vitro and mouse in vivo models of inflammation. Our data show that these inhibitors (CPP11G and CPP11H) disrupted canonical Nox2 organizing factor, p47phox, translocation to Nox2 in the plasma membrane; and abolished ROS production, markedly attenuated stress-responsive MAPK signaling and downstream AP-1 and NFκB nuclear translocation in human cells. Consequently, cell adhesion molecule expression and monocyte adherence were significantly inhibited by both inhibitors. In vivo, TNFα-induced ROS and inflammation were ameliorated by targeted Nox2 inhibition, which, in turn, improved hind-limb blood flow. These studies identify a proximal role for Nox2 in propagated inflammatory signaling and support therapeutic value of Nox2 inhibitors in inflammatory disease

    MAP4K4 expression in cardiomyocytes: multiple isoforms, multiple phosphorylations and interactions with striatins.

    Get PDF
    The Ser/Thr kinase MAP4K4, like other GCKIV kinases, has N-terminal kinase and C-terminal citron homology (CNH) domains. MAP4K4 can activate c-Jun N-terminal kinases (JNKs), and studies in the heart suggest it links oxidative stress to JNKs and heart failure. In other systems, MAP4K4 is regulated in striatin-interacting phosphatase and kinase (STRIPAK) complexes, in which one of three striatins tethers PP2A adjacent to a kinase to keep it dephosphorylated and inactive. Our aim was to understand how MAP4K4 is regulated in cardiomyocytes. The rat MAP4K4 gene was not properly defined. We identified the first coding exon of the rat gene using 5'-RACE, we cloned the full-length sequence and confirmed alternative-splicing of MAP4K4 in rat cardiomyocytes. We identified an additional α-helix C-terminal to the kinase domain important for kinase activity. In further studies, FLAG-MAP4K4 was expressed in HEK293 cells or cardiomyocytes. The Ser/Thr protein phosphatase inhibitor calyculin A (CalA) induced MAP4K4 hyperphosphorylation, with phosphorylation of the activation loop and extensive phosphorylation of the linker between the kinase and CNH domains. This required kinase activity. MAP4K4 associated with myosin in untreated cardiomyocytes, and this was lost with CalA-treatment. FLAG-MAP4K4 associated with all three striatins in cardiomyocytes, indicative of regulation within STRIPAK complexes and consistent with activation by CalA. Computational analysis suggested the interaction was direct and mediated via coiled-coil domains. Surprisingly, FLAG-MAP4K4 inhibited JNK activation by H2O2 in cardiomyocytes and increased myofibrillar organisation. Our data identify MAP4K4 as a STRIPAK-regulated kinase in cardiomyocytes, and suggest it regulates the cytoskeleton rather than activates JNKs

    The anti-cancer drug dabrafenib is not cardiotoxic and inhibits cardiac remodelling and fibrosis in a murine model of hypertension.

    Get PDF
    Raf kinases signal via extracellular signal-regulated kinases 1/2 (ERK1/2) to drive cell division. Since activating mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) are highly oncogenic, BRAF inhibitors including dabrafenib have been developed for cancer. Inhibitors of ERK1/2 signalling used for cancer are cardiotoxic in some patients, raising the question of whether dabrafenib is cardiotoxic. In the heart, ERK1/2 signalling promotes not only cardiomyocyte hypertrophy and is cardioprotective but also promotes fibrosis. Our hypothesis is that ERK1/2 signalling is not required in a non-stressed heart but is required for cardiac remodelling. Thus, dabrafenib may affect the heart in the context of, for example, hypertension. In experiments with cardiomyocytes, cardiac fibroblasts and perfused rat hearts, dabrafenib inhibited ERK1/2 signalling. We assessed the effects of dabrafenib (3 mg/kg/d) on male C57BL/6J mouse hearts in vivo. Dabrafenib alone had no overt effects on cardiac function/dimensions (assessed by echocardiography) or cardiac architecture. In mice treated with 0.8 mg/kg/d angiotensin II (AngII) to induce hypertension, dabrafenib inhibited ERK1/2 signalling and suppressed cardiac hypertrophy in both acute (up to 7 d) and chronic (28 d) settings, preserving ejection fraction. At the cellular level, dabrafenib inhibited AngII-induced cardiomyocyte hypertrophy, reduced expression of hypertrophic gene markers and almost completely eliminated the increase in cardiac fibrosis both in interstitial and perivascular regions. Dabrafenib is not overtly cardiotoxic. Moreover, it inhibits maladaptive hypertrophy resulting from AngII-induced hypertension. Thus, Raf is a potential therapeutic target for hypertensive heart disease and drugs such as dabrafenib, developed for cancer, may be used for this purpose
    corecore